UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

COORDINACIÓN DE FORMACIÓN BÁSICA COORDINACIÓN DE FORMACIÓN PROFESIONAL Y VINCULACIÓN UNIVERSITARIA PROGRAMA DE UNIDAD DE APRENDIZAJE

I. DATOS DE IDENTIFICACIÓN				
Unidad Académica: Facultad de Ciencias				
Programa (s) de estudio: Nivel: <u>Licenciatura en Matemáticas Aplicadas,</u> <u>Licenciatura en Física,</u> <u>Licenciatura en Ciencias Computacionales</u>				
3. Viç	gencia del plan:			
4. Nor	mbre de la Unidad de aprendizaje: Álgebra Lineal 5. Clave:			
6. HC	C:_2_ HL HT4 HPC HCL HE_2_CR8			
7. Eta	7. Etapa de formación a la que pertenece: <u>Básica</u>			
8. Ca	8. Carácter de la Unidad de aprendizaje: ObligatoriaX Optativa			
9. Re	9. Requisitos para cursar la unidad de aprendizaje:			
ormuló: <u>D</u>	Ora. Selene Solorza Calderón Vo.Bo. <u>Dr. Alberto Leopoldo Morán y Solares</u>			
echa:	Agosto de 2016 Cargo: Subdirector de la Facultad de Ciencias			

II. PROPÓSITO GENERAL DE LA UNIDAD DE APRENDIZAJE

En la unidad de aprendizaje de Álgebra Lineal se aplicarán los conceptos y las propiedades básicas relacionadas con espacios vectoriales, transformaciones lineales, matrices, sistemas de ecuaciones lineales, determinantes, valores y vectores propios.

En esta unidad de aprendizaje se sentarán las bases que sustentan a la misma disciplina, a otras áreas de las ciencias naturales, exactas, económicas y administrativas.

Álgebra Lineal es de carácter obligatorio para las tres licenciaturas y se ubica en la etapa básica. Se sugiere haber acreditado la unidad de aprendizaje de Álgebra Superior.

III. COMPETENCIA DE LA UNIDAD DE APRENDIZAJE

Aplicar las teorías del álgebra lineal mediante la descripción axiomática, definiciones y fundamentos del álgebra, para resolver problemas que involucren bases de espacios vectoriales, transformaciones lineales, matrices, sistemas de ecuaciones lineales, determinantes, valores y vectores propios con interés, pensamiento crítico y entusiasmo.

IV. EVIDENCIA (S) DE DESEMPEÑO

Elabora un portafolio que contenga el desarrollo y la resolución de los problemas del álgebra lineal, el desarrollo de las demostraciones de los teoremas, lemas o corolarios, las conclusiones y la bibliografía empleada. Se debe entregar en tiempo y forma, utilizando un lenguaje formal, apropiado y claro, además debe mostrar que domina el tema y la apropiada notación matemática.

V. DESARROLLO POR UNIDADES

Competencia

Emplear el concepto de espacio vectorial y sus propiedades, usando la definición, corolarios, lemas y teoremas para determinar si un conjunto es o no un espacio vectorial, la dependencia e independencia lineal de las combinaciones lineales, la dimensión de los espacios vectoriales, las bases de los mismos, con entusiasmo, capacidad de análisis y constancia.

Contenido Duración: 10 horas

1. Espacios vectoriales

- 1.1. Definición y propiedades.
- 1.2. Subespacios vectoriales: propiedades y operaciones.
- 1.3. Dependencia e independencia lineal.
- 1.4. Bases y dimensión.
- 1.5. Cambios de base.

V. DESARROLLO POR UNIDADES

Competencia

Emplear el concepto de transformación lineal, mediante su definición y propiedades, para determinar el núcleo e imagen de la misma, obtener la dimensión de un espacio vectorial a través de la transformación lineal asociada, resolver problemas de composición de transformaciones, con disponibilidad, comprensión de consecuencias y tenacidad.

Contenido Duración: 10 horas

2. Transformaciones Lineales

- 2.1. Definición y propiedades.
- 2.2. Núcleo e imagen de una transformación.
- 2.3. Teorema de la dimensión.
- 2.4. Operaciones: suma, producto por escalares y composición.
- 2.5. La inversa de una transformación lineal y sus propiedades.

V. DESARROLLO POR UNIDADES

Competencia

Resolver sistemas de ecuaciones lineales, a través de la inversa de una matriz y el método de eliminación gaussiana, para aplicarlos a problemas de optimización, con persistencia, creatividad e independencia.

Contenido Duración: 6 horas

3. Matrices y sistemas de ecuaciones lineales

- 3.1. Matrices: operaciones, clasificación y propiedades.
- 3.2. Matrices inversas y sus propiedades.
- 3.3. Sistemas de ecuaciones lineales y sus soluciones
 - 3.3.1. Matrices elementales.
 - 3.3.2. Método de eliminación Gaussiana con notación matricial.
- 3.4. La matriz asociada a una transformación lineal.
- 3.5. El espacio línea de una matriz.

V. DESARROLLO POR UNIDADES

Competencia

Emplear el concepto de determinante, a través de la definición por cofactores y sus propiedades, para resolver problemas de valores característicos, con interés, asertividad e iniciativa.

Contenido Duración: 3

horas

4. Determinantes

- 4.1. Definición por cofactores.
- 4.2. Propiedades.
- 4.3. Regla de Cramer.

V. DESARROLLO POR UNIDADES

Competencia

Usar las propiedades básicas de los valores y vectores propios, usando la definición y sus propiedades, para resolver problemas de valores característicos, con entusiasmo, capacidad de análisis y objetividad.

Contenido Duración: 3 horas

5. Conceptos fundamentales de valores y vectores propios

- 5.1. Definiciones.
- 5.2. Polinomio característico, ecuación característica y valores propios.
- 5.3. Vectores propios, espacios propios y sus bases.
- 5.4. Diagonalización.

VI. ESTRUCTURA DE LAS PRÁCTICAS

No. de Práctica	Competencia(s)	Descripción	Material de Apoyo	Duración
1.	Espacios vectoriales Determinar si un conjunto es un espacio vectorial, utilizando la definición o los teoremas, para encontrarle una base y realizar cambios de bases con actitud crítica y reflexiva.	Integrar equipos de dos o tres personas para determinar si un conjunto es un espacio vectorial, si la respuesta es afirmativa, calcular una base, posteriormente a partir de esa base van a realizar un cambio de base a un problema planteado por el maestro.	Hojas, lápiz, borrador, pintarrón, plumones, apuntes y bibliografía	18 horas
2.	Transformaciones lineales Calcular el núcleo, la imagen y la inversa de una transformación lineal a través de la definición o teoremas para aplicar el teorema de la dimensión a problemas de la misma disciplina y de las ciencias exactas con actitud reflexiva y perseverancia.	De forma individual, determinar el núcleo, la imagen y la inversa de una transformación lineal y usar el teorema de la dimensión en un problema planteado por el maestro.	Hojas, lápiz, borrador, pintarrón, plumones, apuntes y bibliografía	20 horas
3.	Matrices y sistemas de ecuaciones lineales Resolver sistemas de ecuaciones lineales mediante la notación matricial y las propiedades de las matrices para resolver problemas de ingeniería, ciencias naturales y económico-administrativas con actitud crítica y perceptiva.	Integrar equipos de dos o tres personas para resolver sistemas de ecuaciones lineales usando notación matricial y las propiedades de las matrices en un problema planteado por el maestro.	Hojas, lápiz, borrador, pintarrón, plumones, apuntes y bibliografía	10 horas
4.	Determinantes Calcular el determinante de una matriz usando el desarrollo por cofactores y utilizarlos para encontrar inversas de matrices asociadas a sistemas de ecuaciones lineales con interés e iniciativa.	Integrar equipos de dos o tres personas para resolver sistemas de ecuaciones lineales usando determinante y las propiedades de las matrices en un problema planteado por el maestro.	Hojas, lápiz, borrador, pintarrón, plumones, apuntes y bibliografía	8 horas
5.	Conceptos fundamentales de valores y vectores propios Diagonalizar matrices utilizando valores y vectores propios para resolver problemas de la misma disciplina como de las ciencias exactas con actitud propositiva y tenacidad.	Integrar equipos de dos o tres personas para diagonalizar la matriz asociada a un sistema de ecuaciones lineales usando valores y vectores propios en un problema planteado por el maestro.	Hojas, lápiz, borrador, pintarrón, plumones, apuntes y bibliografía	8 horas

VII. METODOLOGÍA DE TRABAJO

El docente:

- Presenta la Unidad de Aprendizaje.
- Expondrá los temas, proporcionará referencias y material auxiliar en cada uno de los mismos.
- Planteará la necesidad del estudio del tema a partir de problemas basados en situaciones reales.
- Resolverá problemas y realizará actividades de refuerzo o ampliación según sea el caso.
- Individualizará, dentro de lo posible, el seguimiento del aprendizaje de cada alumno.
- Coordinará, dentro de lo posible, los distintos ritmos de trabajo y de adquisición de conocimientos.
- Orientará y reconducirá el trabajo de los alumnos, ya sea individual o en grupo.
- Explicará el proceso y los instrumentos de evaluación.

El estudiante:

- · Participará en clase.
- Profundizará en los temas expuestos.
- Realizará un estudio del estado del arte en un tema específico.
- Resolverá problemas, ejercicios y demostraciones a través de tareas, talleres y exposiciones en forma individual o en equipo.
 Las tareas y talleres se entregarán en tiempo y forma, con letra legible, presentará las respuestas en el orden que se plantearon las preguntas, utilizando el lenguaje formal de las matemáticas.

VIII. CRITERIOS DE EVALUACIÓN

Para la acreditación del curso se atenderá al Estatuto Escolar Vigente, artículos 70-71, por lo que el estudiante deberá contar un mínimo de 80% de asistencias en el periodo. Tener un mínimo aprobatorio de 60 en su calificación final.

Se sugiere que el estudiante acredite la unidad de aprendizaje mediante:

Dos exámenes parciales	60%
Tareas y talleres	30%
Portafolio	5%
Participación en clases y exposiciones	5%

Elaborar un portafolio que contenga el desarrollo y la resolución de los problemas del álgebra lineal, el desarrollo de las demostraciones de los teoremas, lemas o corolarios, las conclusiones y la bibliografía empleada. Se debe entregar en tiempo y forma, utilizando un lenguaje formal, apropiado y claro, además debe mostrar que domina el tema y la apropiada notación matemática.

IX. BIBLIOGRAFÍA						
Básica	Complementaria					
 Anton, H. (2005) Elementary linear algebra: applications version, Wiley. [Clásico] Grossman, S.I. (2012) Álgebra lineal, 7ma ed., McGraw-Hill. Lang, S. (2002) Algebra, 3ra ed., Springer. [clásico] Larson, R.E. (2011) Introducción al álgebra lineal, Limusa. Lay, D.C. (2012) Álgebra lineal y sus aplicaciones, 4ta ed., Pearson. Smith, L. (2012) Linear Algebra, 2da. Ed. Springer-Verlag. Strang. G, Linear algebra lectures: http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/ 	 Anton, H. (2003) Introducción al álgebra lineal, 3ra ed., Limusa. [clásico] Davis, H. T. and Thomson, K.T. (2000) Linear Algebra and Linear Operators in Engineering: With Applications in Mathematica. [clásico] Academic Press. eBook: http://web.a.ebscohost.com/ehost/ebookviewer/ebook/ZTAwMHh3d19 fMjA3MTQ4X19BTg2?sid=14bc9481-fe7c-4177-b836-3287143c060a@sessionmgr4003&vid=3&format=EB&rid=8 Strang, G. (2007) Álgebra lineal y sus aplicaciones, 4ta ed., Thompson. [clásico] 					

X. PERFIL DOCENTE

Profesionista en Matemáticas o área afín con experiencia en docencia y conocimientos amplios en Álgebra Lineal y sus aplicaciones.